skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Babadi, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Spatial transcriptomics (ST) has emerged as a powerful technology for bridging histology imaging with gene expression profiling. However, its application has been limited by low throughput and the need for specialized experimental facilities. Prior works sought to predict ST from whole-slide histology images to accelerate this process, but they suffer from two major limitations. First, they do not explicitly model cell-cell interaction as they factorize the joint distribution of whole-slide ST data and predict the gene expression of each spot independently. Second, their encoders struggle with memory constraints due to the large number of spots (often exceeding 10,000) in typical ST datasets. Herein, we propose STFlow, a flow matching generative model that considers cell-cell interaction by modeling the joint distribution of gene expression of an entire slide. It also employs an efficient slide-level encoder with local spatial attention, enabling whole-slide processing without excessive memory overhead. On the recently curated HEST-1k and STImage-1K4M benchmarks, STFlow substantially outperforms state-of-the-art baselines and achieves over 18% relative improvements over the pathology foundation models. 
    more » « less
    Free, publicly-accessible full text available June 18, 2026